\times 0.18 mm

8525 measured reflections

 $R_{\rm int} = 0.038$

3059 independent reflections

1916 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(5-Hydroxy-3-methyl-5-phenyl-4,5dihydro-1H-pyrazol-1-yl)(pyridin-4-yl)methanone monohydrate

Hadi Kargar,^a Reza Kia,^{b,c}* Fatemeh Froozandeh,^a Moayad Hossaini Sadr^d and Muhammad Nawaz Tahir^e*

^aDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, ^bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, ^cX-ray Crystallography Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, ^dDepartment of Chemistry, Azarbaijan University of Tarbiat Moallem, Tabriz, Iran, and ^eDepartment of Physics, University of Sargodha, Punjab, Pakistan Correspondence e-mail: rkia@srbiau.ac.ir, zsrkk@yahoo.com, dmntahir_uos@yahoo.com

Received 9 December 2010; accepted 15 December 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.121; data-to-parameter ratio = 15.3.

In the title compound, $C_{16}H_{15}N_3O_2 \cdot H_2O$, the mean plane of the approximately planar pyrazole ring [maximum deviation = 0.0474 (18) Å] makes dihedral angles of 86.32 (11) and $45.04 (10)^{\circ}$ with the phenyl and pyridine rings, respectively. The dihedral angle between the phenyl and pyridine rings is 69.62 (11)°. In the crystal, intermolecular $O-H \cdots O$ and O-H...N hydrogen bonds connect the components into chains along [010]. The crystal structure is further stabilized by $\pi - \pi$ stacking interactions with centroid-centroid distances of 3.7730 (12) Å.

Related literature

For standard values of bond lengths, see: Allen et al. (1987).

Experimental

Crystal data

V = 1501.77 (16) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.09 \text{ mm}^{-1}$
T = 296 K
$0.32 \times 0.24 \times 0.18$ r

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.971, \ T_{\max} = 0.983$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	200 parameters
$wR(F^2) = 0.121$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
3059 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots O1W^i$	0.92	1.84	2.7490 (19)	173
$O1W - H1W1 \cdots O2^{ii}$	0.92	1.89	2.8003 (19)	169
$O1W - H2W1 \cdots N3^{iii}$	0.85	2.13	2.976 (2)	173

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (iii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL and PLATON.

HK and FF thank the PNU for the financial support. RK thanks the Science and Research Branch, Islamic Azad University. MNT thanks the University of Sargodha, Pakistan, for the research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5187).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, o209 [doi:10.1107/S160053681005275X]

(5-Hydroxy-3-methyl-5-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)(pyridin-4-yl)methanone monohydrate

H. Kargar, R. Kia, F. Froozandeh, M. Hossaini Sadr and M. N. Tahir

Comment

The asymmetric unit of the title compound, Fig. 1, comprises a substituted pyrazole molecule and a solvent water molecule. The bond lengths (Allen *et al.*, 1987) and angles are within the normal ranges. The dihedral angle the mean plane of the pyrazole ring makes with the phenyl and pyridine rings are 86.32 (11) and 45.04 (10)°, respectively. The dihedral angle between the phenyl ring and the pyridine ring is 69.62 (11)Å.

In the crystal structure, intermolecular O—H···O and O—H···N hydrogen bonds connect the components of the structure to form one-dimensional chains along [0 1 0]. The crystal structure is further stabilized by intermolecular π - π stacking interactions [Cg1··· $Cg1^{iv}$ = 3.7730 (11)Å, (iv) -x, 1 - y, -z, Cg1 is the centroid of the C12-C16/N3 ring].

Experimental

The title compound was synthesized by adding isoniazide (2 mmol) to a solution of benzoylacetone (2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered and the white single crystals suitable for *X*-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement

The H atoms of the water and hydroxy groups were located in a difference Fourier map and constraied to refine on the parent atom with $U_{iso}(H) = 1.5 U_{eq}(O)$, see Table 1. The remaining H atoms were positioned geometrically with C—H = 0.93-0.97 Å and included in a riding-model approximation with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$. A rotating group model was used for the methyl group.

Figures

Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.

Fig. 2. The packing of the compound viewed along the *c*-axis showing 1-D extended chains along the *b*-axis through hydrogen bonds. All H atoms removed except those involved in the hydrogen bonds. Hydrogen bonds are shown as dashed lines.

(5-Hydroxy-3-methyl-5-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)(pyridin- 4-yl)methanone monohydrate

Crystal data

$C_{16}H_{15}N_3O_2 \cdot H_2O$	F(000) = 632
$M_r = 299.33$	$D_{\rm x} = 1.324 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2540 reflections
a = 16.9676 (10) Å	$\theta = 2.5 - 27.5^{\circ}$
b = 7.0266 (5) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 12.6135 (6) Å	T = 296 K
$\beta = 93.004 \ (3)^{\circ}$	Prism, white
$V = 1501.77 (16) \text{ Å}^3$	$0.32 \times 0.24 \times 0.18 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	3059 independent reflections
Radiation source: fine-focus sealed tube	1916 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.038$
ϕ and ω scans	$\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$h = -18 \rightarrow 21$
$T_{\min} = 0.971, T_{\max} = 0.983$	$k = -7 \rightarrow 8$
8525 measured reflections	$l = -15 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.121$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.0554P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
3059 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
200 parameters	$\Delta \rho_{max} = 0.15 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds

in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.32045 (8)	0.3424 (2)	-0.01490 (10)	0.0461 (4)
H1	0.2849	0.2478	-0.0322	0.069*
02	0.22503 (8)	0.70361 (19)	0.00147 (10)	0.0455 (4)
O1W	0.21323 (8)	0.4293 (2)	0.41563 (10)	0.0522 (4)
H1W1	0.2123	0.5449	0.4498	0.078*
H2W1	0.1656	0.3911	0.4143	0.078*
N1	0.17899 (8)	0.3038 (2)	0.15669 (11)	0.0339 (4)
N2	0.22186 (8)	0.4400 (2)	0.10150 (11)	0.0347 (4)
N3	-0.05005 (9)	0.7733 (2)	0.10396 (13)	0.0431 (4)
C1	0.36077 (10)	0.5444 (3)	0.12956 (14)	0.0370 (5)
C2	0.35148 (13)	0.6223 (3)	0.22873 (16)	0.0544 (6)
H2	0.3115	0.5788	0.2703	0.065*
C3	0.40176 (17)	0.7653 (4)	0.2661 (2)	0.0726 (8)
H3A	0.3947	0.8188	0.3323	0.087*
C4	0.46131 (16)	0.8286 (4)	0.2071 (3)	0.0770 (8)
H4	0.4951	0.9238	0.2333	0.092*
C5	0.47118 (14)	0.7520 (4)	0.1099 (2)	0.0726 (8)
Н5	0.5119	0.7947	0.0694	0.087*
C6	0.42080 (12)	0.6104 (3)	0.07061 (17)	0.0521 (6)
H6	0.4277	0.5596	0.0036	0.062*
C7	0.30659 (10)	0.3854 (3)	0.09099 (13)	0.0359 (5)
C8	0.31075 (11)	0.2087 (3)	0.16286 (16)	0.0449 (5)
H8A	0.3310	0.1000	0.1255	0.054*
H8B	0.3443	0.2320	0.2262	0.054*
С9	0.22789 (11)	0.1762 (3)	0.19037 (13)	0.0339 (4)
C10	0.20331 (12)	0.0106 (3)	0.25333 (15)	0.0469 (5)
H10A	0.1476	0.0176	0.2628	0.070*
H10B	0.2314	0.0116	0.3214	0.070*
H10C	0.2150	-0.1048	0.2166	0.070*
C11	0.18790 (11)	0.5957 (3)	0.05705 (13)	0.0334 (4)
C12	0.10340 (10)	0.6415 (2)	0.07655 (13)	0.0297 (4)
C13	0.07060 (11)	0.6357 (3)	0.17484 (14)	0.0375 (5)
H13	0.0990	0.5858	0.2335	0.045*
C14	-0.00432 (12)	0.7045 (3)	0.18447 (15)	0.0430 (5)
H14	-0.0247	0.7031	0.2515	0.052*
C15	-0.01844 (11)	0.7738 (3)	0.00927 (15)	0.0407 (5)
H15	-0.0493	0.8176	-0.0488	0.049*
C16	0.05681 (11)	0.7135 (3)	-0.00760 (14)	0.0361 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H16	0.0764	0.7210	-0.07	0.	043*	
Atomic displ	acement parameter	$rs(A^2)$				
	<i>U</i> ¹¹	<i>U</i> ²²	1/33	1/12	1113	1/23
01	0 0399 (8)	0.0500 (9)	0.0490 (8)	-0.0025(7)	0 0074 (6)	-0.0062(7)
02	0.0370(8)	0.0300(9) 0.0445(9)	0.0556 (8)	0.0025(7)	0.0082 (6)	0.0002(7)
01W	0.0428 (8)	0.0447(9)	0.0690 (9)	-0.0010(7)	0.0023 (6)	-0.0063(7)
N1	0.0297(9)	0.0353(9)	0.0368 (8)	-0.0024(8)	0.0023(0) 0.0008(7)	0.0003(7)
N2	0.0297(9)	0.0362 (9)	0.0438 (8)	0.0021(0)	0.0022 (6)	0.0021(7)
N3	0.0210(0)	0.0302(9)	0.0553(11)	0.0010(7)	0.0022 (8)	-0.0013(8)
C1	0.0274(10)	0.0373(11)	0.0355(11) 0.0457(11)	0.0028 (9)	-0.0021(8)	0.0043 (9)
C2	0.0271(10) 0.0458(13)	0.0606 (16)	0.0564(13)	0.0020(5)	-0.0017(10)	-0.0066(11)
C3	0.0676(18)	0.0689 (19)	0.0786(17)	0.0129 (16)	-0.0232(14)	-0.0247(14)
C4	0.0537(17)	0.0506 (17)	0.123 (2)	-0.0011(14)	-0.0303(16)	-0.0094(16)
C5	0.0337(17) 0.0484(15)	0.0663(19)	0.123(2) 0.102(2)	-0.0183(14)	-0.00000(10)	0.0144 (16)
C6	0.0413(12)	0.0551(15)	0.0598(13)	-0.0080(11)	0.002/(11)	0.0046 (11)
C7	0.0253(10)	0.0393(12)	0.0434(11)	0.0041 (9)	0.0048 (8)	0.0036 (9)
C8	0.0255(10) 0.0352(11)	0.0393(12) 0.0387(12)	0.0605(12)	0.0049(10)	0.0006 (9)	0.0000(3)
C9	0.0352(11)	0.0314(11)	0.0345(9)	0.0005 (9)	0.0000 (8)	-0.0005(8)
C10	0.0353(11) 0.0472(12)	0.0370(12)	0.0515(9)	0.0009(11)	0.0055 (9)	0.00000(0)
C11	0.0294(10)	0.0370(12) 0.0355(11)	0.0349(10)	0.0017 (9)	-0.0009(8)	0.0008 (9)
C12	0.0291(10)	0.0249 (10)	0.0351(10)	-0.0014(8)	0 0004 (8)	-0.0009(8)
C13	0.0203(10) 0.0348(11)	0.0219(10) 0.0420(12)	0.0355(10)	0.0022(10)	-0.0015(8)	0.0012 (9)
C14	0.0381(12)	0.0480(13)	0.0222 (10) 0.0431 (11)	-0.0005(10)	0.0053 (9)	-0.0035(9)
C15	0.0343(11)	0.0386(12)	0.0480(12)	0.0020(10)	-0.0095(9)	0.0048 (9)
C16	0.0363(11)	0.0358(11)	0.0360(12)	0.0017(9)	-0.0013(8)	0.0013 (8)
	0.0000 (11)	5.0000 (11)			0.0012 (0)	5.0012 (0)
C						
Geometric p	arameters (A, °)					
01 C7		1.401(2)	C5	C6	1 39	6 (3)

01-07	1.401 (2)	C5—C6	1.386 (3)
01—H1	0.9166	С5—Н5	0.9300
O2—C11	1.229 (2)	С6—Н6	0.9300
O1W—H1W1	0.9200	C7—C8	1.536 (3)
O1W—H2W1	0.8517	C8—C9	1.483 (3)
N1—C9	1.279 (2)	C8—H8A	0.9700
N1—N2	1.408 (2)	C8—H8B	0.9700
N2—C11	1.345 (2)	C9—C10	1.481 (3)
N2—C7	1.501 (2)	C10—H10A	0.9600
N3—C15	1.334 (2)	C10—H10B	0.9600
N3—C14	1.336 (2)	C10—H10C	0.9600
C1—C6	1.373 (3)	C11—C12	1.502 (2)
C1—C2	1.382 (3)	C12—C16	1.386 (2)
C1—C7	1.511 (3)	C12—C13	1.386 (2)
C2—C3	1.384 (3)	C13—C14	1.371 (3)
С2—Н2	0.9300	С13—Н13	0.9300
C3—C4	1.360 (4)	C14—H14	0.9300
С3—НЗА	0.9300	C15—C16	1.372 (3)
C4—C5	1.358 (4)	C15—H15	0.9300

C4—H4	0.9300	C16—H16	0.9300
C7—O1—H1	104.0	С9—С8—Н8А	110.9
H1W1—O1W—H2W1	104.4	С7—С8—Н8А	110.9
C9—N1—N2	107.33 (14)	С9—С8—Н8В	110.9
C11—N2—N1	122.54 (15)	С7—С8—Н8В	110.9
C11—N2—C7	124.25 (15)	H8A—C8—H8B	108.9
N1—N2—C7	113.06 (13)	N1	122.21 (17)
C15—N3—C14	115.90 (17)	N1—C9—C8	114.87 (16)
C6—C1—C2	118.6 (2)	C10—C9—C8	122.91 (17)
C6—C1—C7	122.12 (17)	C9—C10—H10A	109.5
C2—C1—C7	119.22 (17)	С9—С10—Н10В	109.5
C1—C2—C3	119.9 (2)	H10A—C10—H10B	109.5
C1—C2—H2	120.1	С9—С10—Н10С	109.5
C3—C2—H2	120.1	H10A—C10—H10C	109.5
C4—C3—C2	120.9 (2)	H10B—C10—H10C	109.5
С4—С3—НЗА	119.5	O2—C11—N2	121.24 (17)
С2—С3—НЗА	119.5	O2—C11—C12	118.90 (16)
C5-C4-C3	119.6 (2)	N2-C11-C12	119.85 (16)
C5—C4—H4	120.2	C16—C12—C13	117.15 (17)
C3—C4—H4	120.2	C16-C12-C11	117 65 (15)
C4—C5—C6	120.3 (2)	C13 - C12 - C11	124 86 (16)
C4	119.9	C14 - C13 - C12	119 10 (17)
С6—С5—Н5	119.9	C14-C13-H13	120.4
C1 - C6 - C5	120.7(2)	C12—C13—H13	120.4
C1—C6—H6	1197	N3-C14-C13	124 36 (18)
C5—C6—H6	119.7	N3-C14-H14	117.8
01 - C7 - N2	110.42 (13)	C13—C14—H14	117.8
01 - 07 - 01	109 67 (14)	N3-C15-C16	123.97 (17)
N_{2}^{2}	110.60 (15)	N3-C15-H15	118.0
01 - C7 - C8	112 56 (16)	C_{16} C_{15} H_{15}	118.0
N_{2}^{2}	99 74 (14)	C_{15} C_{16} C_{16} C_{12}	119.47 (17)
C1 - C7 - C8	113 51 (15)	$C_{15} - C_{16} - H_{16}$	120.3
$C_{9} - C_{8} - C_{7}$	104 34 (15)	C_{12} C_{16} H_{16}	120.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	170.02 (16)	$N_2 = C_1^2 = C_2^2 = C_2^2$	7.22 (19)
C9 = N1 = N2 = C7	-1/9.02(10)	$N_2 - C_7 - C_8 - C_9$	124.87 (16)
$C_{9} = N_{1} = N_{2} = C_{7}$	3.51(10)	$C_1 = C_7 = C_8 = C_9$	124.87 (10)
$C_{0} = C_{1} = C_{2} = C_{3}$	0.0(3)	$N_2 = N_1 = C_9 = C_{10}$	1/9.31 (10)
$C_{1} = C_{1} = C_{2} = C_{3}$	1/8.03 (19)	$N_2 - N_1 - C_9 - C_8$	0.2(2)
C1 = C2 = C3 = C4	-1.1(4)	C/-C8-C9-N1	-5.2(2)
$C_2 = C_3 = C_4 = C_5$	0.7 (4)	C/-C8-C9-C10	1/5.09 (1/)
$C_{3} = C_{4} = C_{5} = C_{6}$	0.2 (4)	N1 = N2 = C11 = O2	-1/3.55(15)
$C_2 = C_1 = C_0 = C_3$	0.2(3)	$C = N_2 = C_{11} = C_{12}$	1.7 (3)
C/-CI-C6-CS	-1/(2)	NI = N2 = CII = CI2	/.4 (2)
C4 - C5 - C6 - C1	-0.6(4)	$C/=N_2=C_{11}=C_{12}$	-1//.38(15)
$U_{11} = N_2 = U_1 = 0_1$	-64.9 (2)	$U_2 - U_{11} - U_{12} - U_{16}$	59.6 (2)
N1 - N2 - C / - O1	110./1 (15)	N2 - C11 - C12 - C16	-141.39 (18)
U11—N2—C7—C1	56.7 (2)	02-C11-C12-C13	-133.48 (19)
N1 - N2 - C' - C1	-127.72 (15)	N2—C11—C12—C13	45.6 (3)
C11—N2—C7—C8	176.49 (17)	C16—C12—C13—C14	-1.5(3)

supplementary materials

N1—N2—C7—C8	-7.92 (18)	C11—C12—C13—C14	171.52 (18)
C6—C1—C7—O1	-8.6 (2)	C15—N3—C14—C13	-0.4 (3)
C2—C1—C7—O1	173.52 (17)	C12—C13—C14—N3	2.0 (3)
C6—C1—C7—N2	-130.57 (19)	C14—N3—C15—C16	-1.7 (3)
C2C1C7N2	51.5 (2)	N3-C15-C16-C12	2.1 (3)
C6—C1—C7—C8	118.3 (2)	C13—C12—C16—C15	-0.4 (3)
C2—C1—C7—C8	-59.6 (2)	C11-C12-C16-C15	-173.97 (17)
O1—C7—C8—C9	-109.82 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1···O1W ⁱ	0.92	1.84	2.7490 (19)	173.
O1W—H1W1···O2 ⁱⁱ	0.92	1.89	2.8003 (19)	169.
O1W—H2W1···N3 ⁱⁱⁱ	0.85	2.13	2.976 (2)	173.
		1/2 1/2		

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) x, -y+3/2, z+1/2; (iii) -x, y-1/2, -z+1/2.

